XXI. Bakerian Lecture.— On the continuity of the gaseous and liquid states of matter

Author:

Abstract

In 1863 the author announced, in a communication which Dr. Miller had the kindness to publish in the third edition of his 'Chemical Physics,’ that on partially liquefying carbonic acid by pressure, and gradually raising at the same tune the temperature to about 88° Fahr., the surface of de­marcation between the liquid and gas became fainter, lost its curvature, and at last disappeared, the tube being then filled with a fluid which, from its optical and other properties, appeared to be perfectly homogeneous. The present paper contains the results of an investigation of this subject, which has occupied the author for several years. The temperature at which carbonic acid ceases to liquefy by pressure he designates the critical point, and he finds it to be 30°·92 C. Although liquefaction does not occur at temperatures a little above this point, a very great change of density is produced by slight alterations of pressure, and the flickering movements, also described in 1863, come conspicuously into view. In this communication, the combined effects of heat and pressure upon carbonic acid at temperatures varying from 13° C. to 48° C., and at pressures ranging from 48 to 109 atmospheres, are fully examined.

Publisher

The Royal Society

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What Are Supercritical Fluids?;Product, Process and Plant Design Using Subcritical and Supercritical Fluids for Industrial Application;2023

2. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview;Nuclear Science and Techniques;2017-07-03

3. Feasibility study of a new approach to removal of paint coatings in remanufacturing;Journal of Materials Processing Technology;2016-08

4. Molecular dynamics simulation of the formation of pharmaceutical particles by rapid expansion of a supercritical solution;The Journal of Supercritical Fluids;2010-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3