Photoacclimation and induction of light-enhanced calcification in the mesophotic coral Euphyllia paradivisa

Author:

Eyal Gal123ORCID,Cohen Itay24,Eyal-Shaham Lee12,Ben-Zvi Or1ORCID,Tikochinski Yaron5,Loya Yossi1ORCID

Affiliation:

1. School of Zoology, Tel-Aviv University, Tel Aviv 69978, Israel

2. The Interuniversity Institute for Marine Sciences of Eilat, Eilat 88103, Israel

3. The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv 69978, Israel

4. The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

5. School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel

Abstract

Corals and their photosymbionts experience inherent changes in light along depth gradients, leading them to have evolved several well-investigated photoacclimation strategies. As coral calcification is influenced by light (a process described as LEC—‘light-enhanced calcification’), studies have sought to determine the link between photosynthesis and calcification, but many puzzling aspects still persist. Here, we examine the physiology of Euphyllia paradivisa , a coral species found at a wide range of depths but that is strictly mesophotic in the Red Sea; and also examines the coupling between photosynthesis and LEC by investigating the response of the coral under several controlled light regimes during a long-term experiment. E. paradivisa specimens were collected from 40 to 50 m depth and incubated under three light conditions for a period of 1 year: full-spectrum shallow-water light (approx. 3 m, e.g. shallow-light treatment); blue deep-water light (approx. 40 m, e.g. mesophotic-light treatment) or total darkness (e.g. dark treatment). Net photosynthesis remained similar in the shallow-light-treated corals compared to the mesophotic-light-treated corals, under both low and high light. However, calcification increased dramatically with increasing light intensity in the shallow-light-treated corals, suggesting a decoupling between these processes. Photoacclimation to shallow-water conditions was indicated by enhanced respiration, a higher density of zooxanthellae per polyp and lower chlorophyll a content per cell. The dark-treated corals became completely bleached but did not lower their metabolism below that of the mesophotic-light-treated corals. No Symbiodinium clade shift was found following the year-long light treatments. We conclude that E. paradivisa , and its original symbiont clade, can adapt to various light conditions by controlling its metabolic rate and growth energy investment, and consequently induce LEC.

Funder

United States Agency for International Development

Israel Science Foundation

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3