Taking advantage of hybrid bioinspired intelligent algorithm with decoupled extended Kalman filter for optimizing growing and pruning radial basis function network

Author:

Chai Zhilei12,Song Wei132ORCID,Bao Qinxin1,Ding Feng1,Liu Fei1

Affiliation:

1. School of Internet of Things (IOT) Engineering, Jiangnan University, Wuxi, Jiangsu, China

2. Engineering Research Center of Internet of Things Applied Technology, Ministry of Education, Wuxi, Jiangsu, China

3. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi, Jiangsu, China

Abstract

The growing and pruning radial basis function (GAP-RBF) network is a promising sequential learning algorithm for prediction analysis, but the parameter selection of such a network is usually a non-convex problem and makes it difficult to handle. In this paper, a hybrid bioinspired intelligent algorithm is proposed to optimize GAP-RBF. Specifically, the excellent local convergence of particle swarm optimization (PSO) and the extensive search ability of genetic algorithm (GA) are both considered to optimize the weights and bias term of GAP-RBF. Meanwhile, a competitive mechanism is proposed to make the hybrid algorithm choose the appropriate individuals for effective search and further improve its optimization ability. Moreover, a decoupled extended Kalman filter (DEKF) method is introduced in this study to reduce the size of error covariance matrix and decrease the computational complexity for performing real-time predictions. In the experiments, three classic forecasting issues including abalone age, Boston house price and auto MPG are adopted for extensive test, and the experimental results show that our method performs better than PSO and GA these two single bioinspired optimization algorithms. What is more, our method via DEKF achieves the better results in comparison with the state-of-art sequential learning algorithms, such as GAP-RBF, minimal resource allocation network, resource allocation network using an extended Kalman filter and resource allocation network.

Funder

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3