Dual tree complex wavelet transform-based signal denoising method exploiting neighbourhood dependencies and goodness-of-fit test

Author:

Naveed KhuramORCID,Shaukat Bisma,ur Rehman Naveed

Abstract

A novel signal denoising method is proposed whereby goodness-of-fit (GOF) test in combination with a majority classifications-based neighbourhood filtering is employed on complex wavelet coefficients obtained by applying dual tree complex wavelet transform (DT-CWT) on a noisy signal. The DT-CWT has proven to be a better tool for signal denoising as compared to the conventional discrete wavelet transform (DWT) owing to its approximate translation invariance. The proposed framework exploits statistical neighbourhood dependencies by performing the GOF test locally on the DT-CWT coefficients for their preliminary classification/detection as signal or noise. Next, a deterministic neighbourhood filtering approach based on majority noise classifications is employed to detect false classification of signal coefficients as noise (via the GOF test) which are subsequently restored. The proposed method shows competitive performance against the state of the art in signal denoising.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3