Abstract
A novel signal denoising method is proposed whereby goodness-of-fit (GOF) test in combination with a majority classifications-based neighbourhood filtering is employed on complex wavelet coefficients obtained by applying dual tree complex wavelet transform (DT-CWT) on a noisy signal. The DT-CWT has proven to be a better tool for signal denoising as compared to the conventional discrete wavelet transform (DWT) owing to its approximate translation invariance. The proposed framework exploits statistical neighbourhood dependencies by performing the GOF test locally on the DT-CWT coefficients for their preliminary classification/detection as signal or noise. Next, a deterministic neighbourhood filtering approach based on majority noise classifications is employed to detect false classification of signal coefficients as noise (via the GOF test) which are subsequently restored. The proposed method shows competitive performance against the state of the art in signal denoising.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献