Ceramide-transfer protein-mediated ceramide transfer is a structurally tunable flow-inducing mechanism with structural feed-forward loops

Author:

Giordano Giulia1ORCID

Affiliation:

1. Delft Center for Systems and Control, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands

Abstract

This paper considers two models of ceramide-transfer protein (CERT)-mediated ceramide transfer at the trans -Golgi network proposed in the literature, short distance shuttle and neck swinging , and seeks structural (parameter-free) features of the two models, which rely exclusively on the peculiar interaction network and not on specific parameter values. In particular, it is shown that both models can be seen as flow-inducing systems, where the flows between pairs of species are tuned by the concentrations of other species, and suitable external inputs can structurally regulate ceramide transfer. In the short distance shuttle model, the amount of transferred ceramide is structurally tuned by active protein kinase D (PKD), both directly and indirectly, in a coherent feed-forward loop motif. In the neck-swinging model, the amount of transferred ceramide is structurally tuned by active PI4KIIIβ, while active PKD has an ambivalent effect, due to the presence of an incoherent feed-forward loop motif that directly inhibits ceramide transfer and indirectly promotes it; the structural role of active PKD is to favour CERT mobility in the cytosol. It is also shown that the influences among key variables often have structurally determined steady-state signs, which can help falsify the models against experimental traces.

Funder

Technische Universiteit Delft

Deutscher Akademischer Austauschdienst

Publisher

The Royal Society

Subject

Multidisciplinary

Reference99 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3