What can associative learning do for planning?

Author:

Lind Johan12ORCID

Affiliation:

1. Centre for Cultural Evolution, Stockholm University, Stockholm, Sweden

2. Department of Zoology, Stockholm University, Stockholm, Sweden

Abstract

There is a new associative learning paradox. The power of associative learning for producing flexible behaviour in non-human animals is downplayed or ignored by researchers in animal cognition, whereas artificial intelligence research shows that associative learning models can beat humans in chess. One phenomenon in which associative learning often is ruled out as an explanation for animal behaviour is flexible planning. However, planning studies have been criticized and questions have been raised regarding both methodological validity and interpretations of results. Due to the power of associative learning and the uncertainty of what causes planning behaviour in non-human animals, I explored what associative learning can do for planning. A previously published sequence learning model which combines Pavlovian and instrumental conditioning was used to simulate two planning studies, namely Mulcahy & Call 2006 ‘Apes save tools for future use.’ Science 312 , 1038–1040 and Kabadayi & Osvath 2017 ‘Ravens parallel great apes in flexible planning for tool-use and bartering.’ Science 357 , 202–204. Simulations show that behaviour matching current definitions of flexible planning can emerge through associative learning. Through conditioned reinforcement, the learning model gives rise to planning behaviour by learning that a behaviour towards a current stimulus will produce high value food at a later stage; it can make decisions about future states not within current sensory scope. The simulations tracked key patterns both between and within studies. It is concluded that one cannot rule out that these studies of flexible planning in apes and corvids can be completely accounted for by associative learning. Future empirical studies of flexible planning in non-human animals can benefit from theoretical developments within artificial intelligence and animal learning.

Funder

Knut och Alice Wallenbergs Stiftelse

Publisher

The Royal Society

Subject

Multidisciplinary

Reference71 articles.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3