Development of coating formulation with silica–titania core–shell nanoparticles against pathogenic fungus

Author:

Verma JayaORCID,Bhattacharya Arpita

Abstract

In the present study, we developed an antifungal coating formulation using silica, titania and silica–titania core–shell nanoparticles individually. The idea behind the synthesis of core–shell nanoparticles was to use the mechanical strength of silica and the antimicrobial property of TiO 2 together. These nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, EDX, FTIR and X-ray diffraction. Silica nanoparticles of 92 nm were prepared by the sol–gel process, while TiO 2 nanoparticles and nano-core–shells were prepared through the peptization process with a size of 77 and 144 nm separately. The antifungal effect of the prepared nanoparticles was observed in potato dextrose agar media using the concentration of nanoparticles at 1 wt%. These nanoparticles were incorporated in two types of binder, polyurethane and polyacrylic, with the same concentration of nanoparticles. Coatings were applied on tiles, dried and tested against pathogenic fungus, and fungus growth reduction was observed up to 7–10 days. Coatings developed with TiO 2 nanoparticles have shown good growth reduction of pathogenic fungus, but coatings formulated with silica–titania core–shell nanoparticles killed the fungus fusarium completely and have shown around 90% growth reduction for acremonium species also.

Publisher

The Royal Society

Subject

Multidisciplinary

Reference22 articles.

1. Elaboration and application of mathematical model for estimation of mould contamination of some building materials based on ergosterol content determination

2. ASEF. Pollution de l'air intérieur de l'habitat. http://www.asef-asso.fr/attachments/1141_Guide_air%20int%C3%A9rieur.pdf (accessed 30 October 2013).

3. Fungal pollution of indoor environments and its management

4. Contamination fongique des habitations: Bilan de 10 années d'analyses;Santucci R;Rev. Fr. Allergol. Immunol. Clin.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3