Water, water everywhere: environmental DNA can unlock population structure in elusive marine species

Author:

Parsons Kim M.1ORCID,Everett Meredith2,Dahlheim Marilyn3,Park Linda4

Affiliation:

1. Under Contract to NOAA, National Marine Fisheries Service, Marine Mammal Laboratory, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA

2. Under Contract to NOAA, National Marine Fisheries Service, 2725 Montlake Boulevard E, Seattle, WA 98112, USA

3. Marine Mammal Laboratory, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA

4. Northwest Fisheries Science Center, 2725 Montlake Boulevard E, Seattle, WA 98112, USA

Abstract

Determining management units for natural populations is critical for effective conservation and management. However, collecting the requisite tissue samples for population genetic analyses remains the primary limiting factor for a number of marine species. The harbour porpoise ( Phocoena phocoena ), one of the smallest cetaceans in the Northern Hemisphere, is a primary example. These elusive, highly mobile small animals confound traditional approaches of collecting tissue samples for genetic analyses, yet their nearshore habitat makes them highly vulnerable to fisheries by-catch and the effects of habitat degradation. By exploiting the naturally shed cellular material in seawater and the power of next-generation sequencing, we develop a novel approach for generating population-specific mitochondrial sequence data from environmental DNA (eDNA) using surface seawater samples. Indications of significant genetic differentiation within a currently recognized management stock highlights the need for dedicated eDNA sampling throughout the population's range in southeast Alaska. This indirect sampling tactic for characterizing stock structure of small and endangered marine mammals has the potential to revolutionize population assessment for otherwise inaccessible marine taxa.

Funder

NOAA Office of Protected Resources

NOAA Fisheries, NMFS

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3