Revisiting behaviour of monometallic catalysts in chemical vapour deposition synthesis of single-walled carbon nanotubes

Author:

Xiang Rong1ORCID,Maruyama Shigeo12

Affiliation:

1. Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan

2. Energy NanoEngineering Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan

Abstract

A catalyst is essential for the controlled synthesis of single-walled carbon nanotubes (SWNTs) by chemical vapour deposition (CVD). However, it is difficult to observe these nanosized particles in their original forms and in a statistical manner, which has resulted in a vague understanding of the behaviours of these particles. We present a technique to solve this long-standing issue. The key is to have an MEMS fabricated suspended SiO 2 layer, which is thick enough to support catalyst deposition and nanotube growth but thin enough to allow electron beams to transit. On a 20 nm SiO 2 film, we confirm that catalyst can be observed at an atomic resolution, and the catalyst–SWNT junctions can also be routinely observed. As a demonstration of this technique, we revisited the behaviour of monometallic catalysts through a systematic investigation of the size, chemical state and crystal structure of particles before and after high-temperature CVD. The active catalyst is found to follow a tangential growth mode, while the inactive catalyst is divided into three mechanisms: size growth, metal loss and inappropriate precipitation. The latter two mechanisms were not possible to observe by previous techniques.

Funder

Japan Society for the Promotion of Science

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3