Primary biocompatibility tests of poly(lactide-co-glycolide)-(poly-L-orithine/fucoidan) core–shell nanocarriers

Author:

Cai Duanhua1,Fan Jingqian1,Wang Shibin123,Long Ruimin1,Zhou Xia1,Liu Yuangang123ORCID

Affiliation:

1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China

2. Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China

3. Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, People's Republic of China

Abstract

Layer-by-layer (LbL) self-assembly is the technology used in intermolecular static electricity, hydrogen bonds, covalent bonds and other polymer interactions during film assembling. This technology has been widely studied in the drug carrier field. Given their use in drug delivery systems, the biocompatibility of these potential compounds should be addressed. In this work, the primary biocompatibility of poly(lactide-co-glycolide)-(poly-L-orithine/fucoidan) [PLGA-(PLO/fucoidan)] core–shell nanoparticles (NPs) was investigated. Atomic force microscopy revealed the PLGA-(PLO/Fucoidan) 4 NPs to be spherical, with a uniform size distribution and a smooth surface, and the NPs were stable in physiological saline. The residual amount of methylene chloride was further determined by headspace gas chromatography, in which the organic solvent can be volatilized during preparation. Furthermore, cell viability, acridine orange/ethidium bromide staining, haemolysis and mouse systemic toxicity were all assessed to show that PLGA-(PLO/fucoidan) 4 NPs were biocompatible with cells and mice. Therefore, these NPs are expected to have potential applications in future drug delivery systems.

Funder

National marine economic innovation and development project

Program for New Century Excellent Talents in Fujian Province University

Science Research Foundation of National Health and Family Planning Commission of PRC & United Fujian Provincial Health and Education Project for Tracking the Key Research

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3