The broiler chicken as a signal of a human reconfigured biosphere

Author:

Bennett Carys E.1ORCID,Thomas Richard2,Williams Mark1,Zalasiewicz Jan1,Edgeworth Matt2,Miller Holly3,Coles Ben1,Foster Alison2,Burton Emily J.4,Marume Upenyu5

Affiliation:

1. School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK

2. School of Archaeology and Ancient History, University of Leicester, Leicester LE1 7RH, UK

3. Department of Classics and Archaeology, University Park, University of Nottingham, Nottingham NG7 2RD, UK

4. School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK

5. School of Agriculture Science, North West University, P Bag X 2046, Mmabatho 2735, South Africa

Abstract

Changing patterns of human resource use and food consumption have profoundly impacted the Earth's biosphere. Until now, no individual taxa have been suggested as distinct and characteristic new morphospecies representing this change. Here we show that the domestic broiler chicken is one such potential marker. Human-directed changes in breeding, diet and farming practices demonstrate at least a doubling in body size from the late medieval period to the present in domesticated chickens, and an up to fivefold increase in body mass since the mid-twentieth century. Moreover, the skeletal morphology, pathology, bone geochemistry and genetics of modern broilers are demonstrably different to those of their ancestors. Physical and numerical changes to chickens in the second half of the twentieth century, i.e. during the putative Anthropocene Epoch, have been the most dramatic, with large increases in individual bird growth rate and population sizes. Broiler chickens, now unable to survive without human intervention, have a combined mass exceeding that of all other birds on Earth; this novel morphotype symbolizes the unprecedented human reconfiguration of the Earth's biosphere.

Funder

Arts and Humanities Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3