Osmosis in semi-permeable pores: an examination of the basic flow equations based on an experimental and molecular dynamics study

Author:

Davis I.S1,Shachar-Hill B1,Curry M.R2,Kim K.S3,Pedley T.J4,Hill A.E1

Affiliation:

1. Physiological Laboratory, University of CambridgeCambridge CB2 3EG, UK

2. Biological Sciences, University of LincolnRiseholme LN2 2LG, UK

3. Lawrence Livermore National LaboratoryLivermore, CA 94550, USA

4. Department of Applied Mathematics and Theoretical Physics, University of CambridgeCambridge CB3 0WA, UK

Abstract

Classically ‘semi-permeable’ pores are generally considered to mediate osmotic flow at a rate dependent upon the hydraulic conductance of the pore and the difference in water potential. The shape or size of the solute molecules is not considered to exert a first-order effect on the flow rate nor is the hydraulic conductance thought to be solute dependent. By the experimental measurement of osmosis in the biological pore AQP (aquaporin) and hard-sphere molecular dynamics simulation of a model pore, we show here that the solute radius can have a profound effect on the osmotic flow rate, causing it to decline steeply with decreasing solute radius.Using a simple non-equilibrium thermodynamic theory, we propose that an additional ‘osmotic flow coefficient’ is required to describe flows in semi-permeable structures such as AQPs, and that the fall in flow rate with radius represents a conversion from hydraulic to diffusive water flow due to increasing penetration of the pore by the solute. The interaction between the pore geometry and the solute size cannot, therefore, be overlooked, although for every solute the system obeys the criterion for semi-permeability required by basic thermodynamics. The osmotic pore theory therefore reveals a novel and potentially rich structure that remains to be explored in full.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3