Elastic and transport properties of cellular solids derived from three-dimensional tomographic images

Author:

Knackstedt Mark A1,Arns Christoph H1,Saadatfar Mohammad1,Senden Tim J1,Limaye Ajay2,Sakellariou Arthur1,Sheppard Adrian P1,Sok Rob M1,Schrof Wolfgang3,Steininger H3

Affiliation:

1. Mesoscale Physics Group, Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National UniversityCanberra, ACT 0200, Australia

2. VizLab, ANU Supercomputing FacilityCanberra, ACT 0200, Australia

3. Polymer Physics, BASF AG67506 Ludwigshafen, Germany

Abstract

We describe a three-dimensional imaging and analysis study of eight industrial cellular foam morphologies. The foam morphologies were generated by differing industrial processing methods. Tomograms are acquired on an X-ray micro-computed tomography facility at scales of approximately equal to at resolutions down to 7 μm. The image quality is sufficient in all cases to measure local structure and connectivity of the foamed material, and the field of view large enough to calculate a range of material properties. Phase separation into solid and porous components is straightforward. Three-dimensional structural characteristics are measured directly on the porous and solid phases of the images. A number of morphological parameters are obtained, including pore volume-to-surface-area ratio, connectivity, the pore and solid phase size distributions defined by maximal sphere openings and chord length measurements. We further calculate the pore size distribution associated with capillary pressure via simulating of mercury drainage on the digital images. The binarized microstructures are used as a basis for calculations of transport properties (fluid permeability, diffusivity and thermal conductivity) and elastic moduli. From the data, we generate property–porosity relationships for the range of foam morphologies imaged and quantitatively analyse the effects of porosity and microstructure on the resultant properties of the foams. We compare our numerical data to commonly used theoretical and empirical property–porosity relationships. For thermal conductivity, we find that the numerical results agree extremely well with an empirical expression based on experimental data of various foams. The upper Hashin–Shtrikman bound also provides an excellent prediction of the data across all densities. From simulation of the diffusivity, we can define the tortuosity of the pore space within the cellular solid. We find that different processing methods lead to strong variations in the tortuosity of the pore space of the foams. For elastic properties, our results show that for the Young modulus, E , both the differential effective medium theory and the classical correlation give a good correlation. Assuming a constant Poisson's ratio leads to reasonable agreement. The best correlation for is given by assuming a slight variation in as a linear function of porosity. The permeability of the foams varies over three orders of magnitude. Correlations for permeability based on the classical Kozeny–Carman equation lead to reasonable agreement, except at the lowest porosities. Permeability estimations based on mercury porosimetry give excellent agreement for all foams.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3