Laminar premixed flame extinction limits. II Combined effects of stretch and radiative loss in the single flame unburnt-to-burnt and the twin-flame unburnt-to-unburnt opposed flow configurations

Author:

Dixon-Lewis Graham1

Affiliation:

1. Department of Fuel and Energy, University of LeedsLeeds LS2 9JT, UK

Abstract

Numerical methods have been used to examine the effects of (a) stretch alone, and (b) a combination of stretch and radiative loss, on the properties and extinction limits of methane–air flames near the lean flammability limit. Two axisymmetric opposed flow configurations were examined: (i) a single flame, unburnt-to-burnt (UTB) system in which fresh reactant is opposed by a stream of its own combustion products at the unburnt temperature, and (ii) a symmetric unburnt-to-unburnt (UTU) configuration where twin flames are supported back to back, one on each side of the stagnation plane. The maximum temperatures achieved in the UTB system are always away from the stagnation plane. For a fixed sufficiently sub-adiabatic product stream temperature, increasing flame stretch or gaseous radiative emissivity, or a combination of both, will augment downstream conductive heat loss, leading to a reduction in T max and eventually to an abrupt extinction if the loss rate is sufficiently large. The UTU system is more complex, and offers the additional possibility of purely stretch-induced extinctions where the flames are forced together back-to-back so that radiative loss is restricted to upstream of the maximum temperature. Extinction in these cases occurs by straightforward truncation of the hot sides of the reaction zones. At sufficiently low stretch, near and at the standard flammability limit, radiative loss makes a major contribution to the overall extinction mechanism in both configurations. The detailed effects of flame stretch on extinction behaviour depend on the diffusion characteristics within the near-limit mixtures, in particular the Lewis number, Le, of the deficient component. The effect of high stretch is always to attenuate the composition range of flammability. However, for Le<1 this range is extended at low to moderate stretch, particularly in the UTU situations where downstream radiative loss is not present at extinction. Lewis number effects for a global methane–air chemistry, and with assumed Le≥1, are discussed in the light of numerical results previously presented by Ju et al . ( Ju et al . 1998 Combust. Flame 113 , 603–614).

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3