Product dynamics for homoclinic attractors

Author:

Ashwin Peter1,Field Michael2

Affiliation:

1. Department of Mathematical Sciences, Laver Building, University of Exeter, Exeter EX4 4QE, UK

2. Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA ()

Abstract

Heteroclinic cycles may occur as structurally stable asymptotically stable attractors if there are invariant subspaces or symmetries of a dynamical system. Even for cycles between equilibria, it may be difficult to obtain results on the generic behaviour of trajectories converging to the cycle. For more–complicated cycles between chaotic sets, the non–trivial dynamics of the ‘nodes’ can interact with that of the ‘connections’. This paper focuses on some of the simplest problems for such dynamics where there are direct products of an attracting homoclinic cycle with various types of dynamics. Using a precise analytic description of a general planar homoclinic attractor, we are able to obtain a number of results for direct product systems. We show that for flows that are a product of a homoclinic attractor and a periodic orbit or a mixing hyperbolic attractor, the product of the attractors is a minimal Milnor attractor for the product. On the other hand, we present evidence to show that for the product of two homoclinic attractors, typically only a small subset of the product of the attractors is an attractor for the product system.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference15 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chaos in coupled heteroclinic cycles and its piecewise-constant representation;Physica D: Nonlinear Phenomena;2023-10

2. Attractors of Direct Products;Qualitative Theory of Dynamical Systems;2021-08-22

3. Regular synchrony lattices for product coupled cell networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2015-01

4. Dynamics near the product of planar heteroclinic attractors;Dynamical Systems;2011-08-17

5. Dynamics of Coupled Cell Networks: Synchrony, Heteroclinic Cycles and Inflation;Journal of Nonlinear Science;2010-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3