On the direct determination of the eigenmodes of finite flow–structure systems

Author:

Pitman Mark W1,Lucey Anthony D1

Affiliation:

1. Fluid Dynamics Research Group, Curtin University of TechnologyBentley, WA 6102, Australia

Abstract

A new method for directly determining the eigenmodes of finite flow–structure systems is presented using the classical problem of the interaction of a uniform incompressible flow with a flexible panel, held at both ends, as an exemplar. The method is a hybrid of theoretical analysis and computational modelling. This method is contrasted with Galerkin and travelling-wave methods, which are most often used to study the hydroelasticity of such systems. The new method does not require ana prioriapproximation of perturbations via a finite sum of modes. Instead, the coupled equations for the wall–flow system are used to derive a single matrix equation for the system that is a second-order differential equation for the panel-displacement variable. This is achieved in this exemplar by applying a combination of boundary-element and finite-element methods to the discretized system. Standard state-space methods are then used to extract the eigenmodes of the system directly. We present the results for the stability of the case of an unsupported flexible plate, elucidating its divergence and flutter characteristics, and the effect of energy dissipation in the structure. We then present the results for the case of a spring-backed flexible plate, showing that its motion is dominated by travelling waves. Finally, we illustrate the versatility of the approach by extracting the stability diagrams and modes for a panel with spatially varying properties and a panel with non-standard boundary conditions. In doing so, we show how spatial inhomogeneity can modify the energy exchanges between flow and structure, thereby introducing a single-mode flutter instability at pre-divergence flow speeds.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3