Classical two-phase Stefan problem for spheres

Author:

McCue Scott W1,Wu Bisheng2,Hill James M2

Affiliation:

1. School of Mathematical Sciences, Queensland University of TechnologyGPO Box 2434, Brisbane, Qld. 4001, Australia

2. Nanomechanics Group, School of Mathematics and Applied Statistics, University of WollongongWollongong, NSW 2522, Australia

Abstract

The classical Stefan problem for freezing (or melting) a sphere is usually treated by assuming that the sphere is initially at the fusion temperature, so that heat flows in one phase only. Even in this idealized case there is no (known) exact solution, and the only way to obtain meaningful results is through numerical or approximate means. In this study, the full two-phase problem is considered, and in particular, attention is given to the large Stefan number limit. By applying the method of matched asymptotic expansions, the temperature in both the phases is shown to depend algebraically on the inverse Stefan number on the first time scale, but at later times the two phases essentially decouple, with the inner core contributing only exponentially small terms to the location of the solid–melt interface. This analysis is complemented by applying a small-time perturbation scheme and by presenting numerical results calculated using an enthalpy method. The limits of zero Stefan number and slow diffusion in the inner core are also noted.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference26 articles.

1. Abramowitz M& Stegun I Handbook of mathematical functions. 1970 New York NY:Dover.

2. Carslaw H.S& Jaeger J.CConduction of heat in solids1973 Oxford UK:Oxford University Press.

3. A Moving Boundary Problem for the Sphere

4. Integral formulations and bounds for two phase Stefan problems initially not at their fusion temperature

5. Asymptotic results for the Stefan problem with kinetic undercooling

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3