The geometry of modified Riemannian extensions

Author:

Calviño-Louzao E.1,García-Río E.1,Gilkey P.2,Vázquez-Lorenzo R.1

Affiliation:

1. Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela15782 Santiago de Compostela, Spain

2. Department of Mathematics, University of OregonEugene, OR 97403, USA

Abstract

We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference38 articles.

1. RIEMANN EXTENSIONS OF AFFINE CONNECTED SPACES

2. Alekseevsky D. V. Cortés V. Galaev A. & Leistner T. In press. Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math . (http://arxiv.org/abs/0707.3063).

3. Sur l'holonomie des variétés pseudo-riemanniennes de signature $(n,n)$

4. A Note on Osserman Lorentzian Manifolds

5. Osserman pseudo-Riemannian manifolds of signature (2,2)

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the cotangent bundle with vertical modified riemannian extensions;Boletim da Sociedade Paranaense de Matemática;2024-05-08

2. Modified special functions: properties, integral transforms and applications to fractional differential equations;Boletim da Sociedade Paranaense de Matemática;2024-05-08

3. Modified conformal extensions;Annals of Global Analysis and Geometry;2023-09-13

4. Notes on some properties of the natural Riemann extension;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2023-06-23

5. Null-Projectability of Levi-Civita Connections;Results in Mathematics;2023-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3