Affiliation:
1. Institute for Gravitation and the Cosmos, The Pennsylvania State University104 Davey Lab, University Park, PA 16802, USA
Abstract
Quantum gravity may remove classical space–time singularities and thus reveal what a universe at the big bang could be like. In loop quantum cosmology, an exactly solvable model is available, which allows one to address precise dynamical coherent states and their evolution in such a setting. It is shown here that quantum fluctuations before the big bang are generically unrelated to those after the big bang. While this is derived only in the solvable model, it presents the case of the strongest control on coherence properties; adding ingredients to a realistic model could only increase the complexity. A reliable determination of pre-big bang quantum fluctuations of geometry would thus require exceedingly precise observations.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献