On wave propagation in an inhomogeneous non–stationary medium with an inhomogeneous non-stationary flow

Author:

Gorman Arthur D.1

Affiliation:

1. Department of Mathematics, Lafayette College, Easton, PA 18042, USA ()

Abstract

An approximate wave equation that models scalar wave propagation in a moving fluid whose ambient properties and flow are inhomogeneous both in space and time is considered. Asymptotic solutions for both non–caustic and caustic regions and some Hamiltonian properties of the equation in both non–caustic and caustic regions are developed.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference13 articles.

1. Characteristic class entering in quantization conditions

2. Arnol'd V. I. 1981 Singularity theory. Cambridge University Press.

3. Brekhovskikh L. M. & Godin O. A. 1999 Acoustics of layered media. II. Point sources and bounded beams. Springer Series in Wave Phenomena vol. 10. Springer.

4. Gilmore R. 1981 Catastrophe theory for scientists and engineers pp. 15-32. Wiley.

5. Godin O. A. 1989 On a wave equation for sound in a nonstationary moving medium. In Acoustics of oceanic medium (ed. L. M. Brekhovskikh & I. B. Andreeva) pp. 217-220. Moscow: Nauka.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3