Fundamental properties of surface waves in lossless stratified structures

Author:

Valerio Guido1,Jackson David R.2,Galli Alessandro1

Affiliation:

1. Department of Electronic Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

2. Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA

Abstract

This paper is focused on dispersive properties of lossless planar layered structures with media having positive constitutive parameters (permittivity and permeability), possibly uniaxially anisotropic. Some of these properties have been derived in the past with reference to specific simple layered structures, and are here established with more general proofs, valid for arbitrary layered structures with positive parameters. As a first step, a simple application of the Smith chart to the relevant dispersion equation is used to prove that evanescent (or plasmonic-type) waves cannot be supported by layers with positive parameters. The main part of the paper is then focused on a generalization of a common graphical solution of the dispersion equation, in order to derive some general properties about the behaviour of the wavenumbers of surface waves as a function of frequency. The wavenumbers normalized with respect to frequency are shown to be always increasing with frequency, and at high frequency they tend to the highest refractive index in the layers. Moreover, two surface waves with the same polarization cannot have the same wavenumber at a given frequency. The low-frequency behaviours are also briefly addressed. The results are derived by means of a suitable application of Foster’s theorem.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3