A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation

Author:

Deshpande Vikram S1,McMeeking Robert M2,Evans Anthony G2

Affiliation:

1. Department of Engineering, University of CambridgeTrumpington Street, Cambridge CB2 1PZ, UK

2. Department of Mechanical Engineering and Department of Materials, University of CaliforniaSanta Barbara, CA 93106, USA

Abstract

A model for the contractility of cells is presented that accounts for the dynamic reorganization of the cytoskeleton. It is motivated by three key biochemical processes: (i) an activation signal that triggers actin polymerization and myosin phosphorylation, (ii) the tension-dependent assembly of the actin and myosin into stress fibres, and (iii) the cross-bridge cycling between the actin and the myosin filaments that generates the tension. Simple relations are proposed to model these coupled phenomena and a constitutive law developed for the activation and response of a single stress fibre. This law is generalized to two- and three-dimensional cytoskeletal networks by employing a homogenization analysis and a finite strain continuum model is developed. The key features of the model are illustrated by considering: (i) a single stress fibre on a series of supports and (ii) a two-dimensional square cell on four supports. The model is shown to be capable of predicting a variety of key experimentally established characteristics including: (i) the decrease of the forces generated by the cell with increasing support compliance, (ii) the influence of cell shape and boundary conditions on the development of structural anisotropy, and (iii) the high concentration of the stress fibres both at the focal adhesions and at the sites of localized applied tension. Moreover, consistent with the experimental findings, the model predicts that multiple activation signals are more effective at developing stress fibres than a single prolonged signal.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3