Affiliation:
1. Department of Applied Mathematics, University of LeedsLeeds LS2 9JT, UK
Abstract
We investigate numerically the flow of an electrically conducting fluid confined in a spherical shell, with the outer sphere stationary, the inner sphere rotating and a magnetic field imposed parallel to the rotation axis. We compute both the axisymmetric basic states and their non-axisymmetric instabilities. Two distinct instability classes emerge, one connected to previous non-magnetic results, the other to previous strongly magnetic results. Both instabilities arise from the basic state's meridional circulation, but are otherwise very different from one another, and are separated by a region of stability that persists even for large Reynolds numbers. Finally, we compute the fully three-dimensional nonlinear equilibration of both instabilities. The second class exhibits a rich variety of secondary bifurcations, involving mode transitions between different azimuthal wave numbers.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献