A hybrid analytical–numerical method for solving evolution partial differential equations. I. The half-line

Author:

Flyer N1,Fokas A.S2

Affiliation:

1. Institute for Mathematics Applied to the Geosciences, National Center for Atmospheric ResearchBoulder, CO 80305, USA

2. Department of Applied Mathematics and Theoretical Physics, University of CambridgeCambridge CB3 0WA, UK

Abstract

A new method, combining complex analysis with numerics, is introduced for solving a large class of linear partial differential equations (PDEs). This includes any linear constant coefficient PDE, as well as a limited class of PDEs with variable coefficients (such as the Laplace and the Helmholtz equations in cylindrical coordinates). The method yields novel integral representations, even for the solution of classical problems that would normally be solved via the Fourier or Laplace transforms. Examples include the heat equation and the first and second versions of the Stokes equation for arbitrary initial and boundary data on the half-line. The new method has advantages in comparison with classical methods, such as avoiding the solution of ordinary differential equations that result from the classical transforms, as well as constructing integral solutions in the complex plane which converge exponentially fast and which are uniformly convergent at the boundaries. As a result, these solutions are well suited for numerics, allowing the solution to be computed at any point in space and time without the need to time step. Simple deformation of the contours of integration followed by mapping the contours from the complex plane to the real line allow for fast and efficient numerical evaluation of the integrals.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference22 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3