An underwater shock simulator

Author:

Deshpande V.S1,Heaver A1,Fleck N.A1

Affiliation:

1. Department of Engineering, University of CambridgeTrumpington Street, Cambridge CB2 1PZ, UK

Abstract

An underwater shock simulator has been developed for the underwater shock loading of materials and test structures within the laboratory. The tube is struck at one end by a steel projectile, with the test structure placed at the opposite end of the tube. Realistic exponentially decaying pressure pulses are generated in the water with peak pressures in the range 15–70 MPa and decay times ranging from 0.1 to 1.5 ms. The peak pressure and the pulse duration are independently adjusted by varying the projectile velocity and mass, respectively. The underwater shock simulator is used to investigate the one-dimensional fluid–structure interaction of sandwich plates with steel face sheets and an aluminium foam core. The degree of core compression is measured as a function of both the underwater shock impulse and the Taylor fluid–structure interaction parameter. Fully coupled finite element simulations agree well with the measurements while decoupling the fluid–structure interaction phase from the core compression phase within the finite element analysis leads to an under-prediction of the degree of core compression.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference23 articles.

1. Interaction between structures and bilinear fluids

2. High strain rate compression of closed-cell aluminium foams

3. One-dimensional response of sandwich plates to underwater shock loading

4. Dharmasena K. P. Queheillalt D. T. Wadley H. N. G. Dudt P. Chen Y. & Knight D. In preparation. Dynamic compressive response under blast loading in water of periodic cellular structures.

5. The Resistance of Clamped Sandwich Beams to Shock Loading

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3