Gaussian fluctuations of Young diagrams under the Plancherel measure

Author:

Bogachev Leonid V1,Su Zhonggen2

Affiliation:

1. Department of Statistics, University of LeedsLeeds LS2 9JT, UK

2. Department of Mathematics, Zhejiang UniversityHangzhou 310 027, People's Republic of China

Abstract

We obtain the central limit theorem for fluctuations of Young diagrams around their limit shape in the bulk of the ‘spectrum’ of partitions λn (under the Plancherel measure), thus settling a long-standing problem posed by Logan & Shepp. Namely, under normalization growing like , the corresponding random process in the bulk is shown to converge, in the sense of finite-dimensional distributions, to a Gaussian process with independent values, while local correlations in the vicinity of each point, measured on various power scales, possess certain self-similarity. The proofs are based on the Poissonization techniques and use Costin–Lebowitz–Soshnikov's central limit theorem for determinantal random point processes. Our results admit a striking reformulation after the rotation of Young diagrams by 45°, whereby the normalization no longer depends on the location in the spectrum. In addition, we explain heuristically the link with an earlier result by Kerov on the convergence to a generalized Gaussian process.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boltzmann distribution on “short” integer partitions with power parts: Limit laws and sampling;Advances in Applied Mathematics;2024-08

2. Core size of a random partition for the Plancherel measure;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2023-11-01

3. Quantum mechanics of Plancherel growth;Nuclear Physics B;2021-05

4. Weak convergence of renewal shot noise processes in the case of slowly varying normalization;Statistics & Probability Letters;2016-07

5. Random Processes with Immigration;Probability and Its Applications;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3