Affiliation:
1. Physique Théorique et Astroparticules, CNRSUniversité Montpellier II, 34095 Montpellier, France
Abstract
The dynamics of a nonlinear and dispersive long surface capillary-gravity wave model equation is studied analytically in its short-wave limit. We exhibit its Lax pair and some non-trivial conserved quantities. Through a change of functions, an unexpected connection between this classical surface water-wave model and the sine-Gordon (or sinh-Gordon) equation is established. Numerical and analytical studies show that in spite of integrability their solutions can develop singularities and multivaluedness in finite time. These features can be traced to the fact that the surface tension term in the energy involves second-order derivatives. It would be interesting to see in an experiment whether such singularities actually appear, for which surface tension would be specifically responsible.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献