Application of discontinuity layout optimization to plane plasticity problems

Author:

Smith Colin1,Gilbert Matthew1

Affiliation:

1. Department of Civil and Structural Engineering, University of SheffieldSir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK

Abstract

A new and potentially widely applicable numerical analysis procedure for continuum mechanics problems is described. The procedure is used here to determine the critical layout of discontinuities and associated upper-bound limit load for plane plasticity problems. Potential discontinuities, which interlink nodes laid out over the body under consideration, are permitted to crossover one another giving a much wider search space than when such discontinuities are located only at the edges of finite elements of fixed topology. Highly efficient linear programming solvers can be employed when certain popular failure criteria are specified (e.g. Tresca or Mohr–Coulomb in plane strain). Stress/velocity singularities are automatically identified and visual interpretation of the output is straightforward. The procedure, coined ‘discontinuity layout optimization’ (DLO), is related to that used to identify the optimum layout of bars in trusses, with discontinuities (e.g. slip-lines) in a translational failure mechanism corresponding to bars in an optimum truss. Hence, a recently developed adaptive nodal connection strategy developed for truss layout optimization problems can advantageously be applied here. The procedure is used to identify critical translational failure mechanisms for selected metal forming and soil mechanics problems. Close agreement with the exact analytical solutions is obtained.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference23 articles.

1. Discrete element slip model of plasticity

2. The analytical solution of some boundary value problems in plane plastic strain

3. Chakrabarty J. 2006 Theory of plasticity pp. 685–690 3rd edn. Oxford UK: Butterworth-Heinemann.

4. Automatic design of optimal structures;Dorn W.S;J. de Mechanique,1964

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3