Fine structure of the Vavilov–Cherenkov radiation

Author:

Afanasiev G.N1,Lyubchenko M.V2,Stepanovsky Yu. P3

Affiliation:

1. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear ResearchDubna, Moscow District 141980, Russia

2. Theoretical Physics Department, Karazin National UniversityKharkov, Ukraine

3. Institute of Physics and TechnologyKharkov, Ukraine

Abstract

We found relativistic quantum corrections to the one-photon Cherenkov emission. It is proved that, in the absence of dispersion, the Vavilov–Cherenkov radiation fills the whole Cherenkov cone (in the Tamm–Frank theory the Vavilov–Cherenkov radiation for the fixed refractive index is confined to the surface of the Cherenkov cone). The radiation intensity reaches the maximum inside the Cherenkov cone. It turns out that photons with different energies fly at different angles in the interval from zero up to the Cherenkov angle corresponding to the initial charge velocity. The visible light region, where the Vavilov–Cherenkov radiation is usually observed, is surrounded by the low intensity infrared region and by the high intensity one corresponding to high energy photons. The ratio of the radiation intensity at the maximum lying in the Roentgen part of the radiation spectrum to the radiation intensity in its visible part is about 10 4 . Taking into account the medium dispersion leads to the appearance of the striped-like radiation structure inside the Cherenkov cone. Experimental data indicating the existence of a non-zero radiation field inside this cone are discussed. In the past, non-relativistic quantum corrections to the radiation intensity were found by Ginzburg. Yet, he did not analyse their influence for large energy–momentum transfer.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference18 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spin-polarization effects in Cherenkov radiation from electrons;Canadian Journal of Physics;2020-07

2. Cherenkov counting;Handbook of Radioactivity Analysis: Volume 2;2020

3. Nonperturbative Quantum Electrodynamics in the Cherenkov Effect;Physical Review X;2018-10-17

4. Tachyonic Cherenkov radiation from supernova remnants;Journal of High Energy Astrophysics;2015-12

5. Tachyonic quantum densities of relativistic electron plasmas: Cherenkov spectra of γ-ray pulsars;Physics Letters A;2014-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3