A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire

Author:

Clayton J.D1

Affiliation:

1. Impact Physics, U.S. Army Research LaboratoryAberdeen Proving Ground, MD 21005-5066, USA

Abstract

A model is developed for elasticity, plasticity and twinning in anisotropic single crystals subjected to large deformations. Dislocation glide and deformation twinning are dissipative, while energy storage mechanisms associated with dislocation lines and twin boundaries are described via scalar internal state variables. Concepts from continuum crystal plasticity are invoked, with shearing rates on discrete glide and twinning systems modelled explicitly. The model describes aspects of thermomechanical behaviour of single crystals of alumina over a range of loading conditions. Resolved shear stresses necessary for glide or twin nucleation at low to moderate temperatures are estimated from nonlinear elastic calculations, theoretical considerations of Peierls barriers and stacking fault energies and observations from shock physics experiments. These estimates are combined with the existing data from high-temperature experiments to provide initial yield conditions spanning a wide range of temperatures. The model reflects hardening of glide and twin systems from dislocations accumulated during basal slip. Residual elastic volume changes, predicted from nonlinear elastic considerations and approximated dislocation line energies, are positive and proportional to the dislocation line density. While the model suggests that generation of very large dislocation densities could influence the pressure–volume response, volume increases from defects are predicted to be small in crystals deformed via basal glide on a single system.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3