The growth of shear bands in the catastrophic failure of soils

Author:

Puzrin A.M1,Germanovich L.N2

Affiliation:

1. Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland

2. Georgia Institute of Technology, Atlanta, GA 30332-0355, USA

Abstract

This paper is an attempt to apply the Palmer–Rice fracture mechanics approach to the shear band propagation in sands and normally consolidated clays. This approach, proposed 30 years ago for overconsolidated clays, had a tremendous advantage of treating a shear band evolution as a true physical process and not just as a sufficient mathematical condition for its existence. Extension of this approach to a wider variety of soils requires for non-elastic soil properties (e.g. isotropic hardening plasticity, strain softening, lack of tensile strength, dilatancy, active and passive failure modes, etc.) to be taken into account. This paper demonstrates how the energy balance and process zone approaches can be applied to the simple problem of the shallow shear band propagation in an infinite slope built of such a soil. The energy balance approach appears to be the most conservative one. It allows for catastrophic and progressive types of soil failure to be properly identified, and dramatically effects the results of the slope stability analysis.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3