Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies

Author:

Cox Barry J1,Thamwattana Ngamta1,Hill James M1

Affiliation:

1. Nanomechanics Group, School of Mathematics and Applied Statistics, University of WollongongWollongong, New South Wales 2522, Australia

Abstract

Owing to their unusual properties, carbon nanostructures such as nanotubes and fullerenes have caused many new nanomechanical devices to be proposed. One such application is that of nanoscale oscillators which operate in the gigahertz range, the so-called gigahertz oscillators. Such devices have potential applications as ultrafast optical filters and nano-antennae. While there are difficulties in producing micromechanical oscillators which operate in the gigahertz range, molecular dynamical simulations indicate that nanoscale devices constructed of multi-walled carbon nanotubes or single-walled carbon nanotubes and C 60 fullerenes could feasibly operate at these high frequencies. This paper investigates the suction force experienced by either an atom or a C 60 fullerene molecule located in the vicinity of an open end of a single-walled carbon nanotube. The atom is modelled as a point mass, the fullerene as an averaged atomic mass distributed over the surface of a sphere. In both cases, the carbon nanotube is modelled as an averaged atomic mass distributed over the surface of an open semi-infinite cylinder. In both cases, the particle being introduced is assumed to be located on the axis of the cylinder. Using the Lennard-Jones potential, the van der Waals interaction force between the atom or C 60 fullerene and the carbon nanotube can be obtained analytically. Furthermore, by integrating the force, an explicit analytic expression for the work done by van der Waals forces is determined and used to derive an acceptance condition, that is whether the particle will be completely sucked into the carbon nanotube by virtue of van der Waals interactions alone, and a suction energy which is imparted to the introduced particle in the form of an increased velocity. The results of the acceptance condition and the calculated suction energy are shown to be in good agreement with the published molecular dynamical simulations. In part II of the paper, a new model is proposed to describe the oscillatory motion adopted by atoms and fullerenes that are sucked into carbon nanotubes.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3