The longitudinal static stability of an aerodynamically alleviated marine vehicle, a mathematical model

Author:

Collu Maurizio1,Patel Minoo H.1,Trarieux Florent1

Affiliation:

1. Department of Offshore and Process Engineering, School of Engineering, University of Cranfield, Cranfield MK43 0AL, UK

Abstract

An assessment of the relative speeds and payload capacities of airborne and waterborne vehicles highlights a gap that can be usefully filled by a new vehicle concept, utilizing both hydrodynamic and aerodynamic forces. A high-speed marine vehicle equipped with aerodynamic surfaces is one such concept. In 1904, Bryan & Williams (Bryan & Williams 1904 Proc. R. Soc. Lond. 73 , 100–116 (doi:10.1098/rspl.1904.0017)) published an article on the longitudinal dynamics of aerial gliders, and this approach remains the foundation of all the mathematical models studying the dynamics of airborne vehicles. In 1932, Perring & Glauert (Perring & Glauert 1932 Reports and Memoranda no. 1493) presented a mathematical approach to study the dynamics of seaplanes experiencing the planing effect. From this work, planing theory has developed. The authors propose a unified mathematical model to study the longitudinal stability of a high-speed planing marine vehicle with aerodynamic surfaces. A kinematics framework is developed. Then, taking into account the aerodynamic, hydrostatic and hydrodynamic forces, the full equations of motion, using a small perturbation assumption, are derived and solved specifically for this concept. This technique reveals a new static stability criterion that can be used to characterize the longitudinal stability of high-speed planing vehicles with aerodynamic surfaces.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference28 articles.

1. A visual experimental technique for planing craft performance;Blake J. I. R.;Trans. R. Inst. Naval Architects,2001

2. The longitudinal stability of aerial gliders.

3. Longitudinal stability and dynamic motions of a small passenger WIG craft

4. Clark D. J. Ellsworth W. M.& Meyer J. R.. 2004 The quest for speed at sea. Technical Digest Naval Surface Warfare Center Carderock Division.

5. Collu M.. 2008 Marine vehicles with aerodynamic surfaces:dynamics mathematical model development. PhD thesis Cranfield University Cranfield.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3