A fast method for nonlinear three-dimensional free-surface waves

Author:

Fochesato Christophe1,Dias Frédéric1

Affiliation:

1. Centre de Mathématiques et de Leurs ApplicationsEcole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan Cedex, France

Abstract

An efficient numerical model for solving fully nonlinear potential flow equations with a free surface is presented. Like the code that was developed by Grilli et al . (Grilli et al . 2001 Int. J. Numer. Methods Fluids 35 , 829–867), it uses a high-order three-dimensional boundary-element method combined with mixed Eulerian–Lagrangian time updating, based on second-order explicit Taylor expansions with adaptive time-steps. Such methods are known to be accurate but expensive. The efficiency of the code has been greatly improved by introducing the fast multipole algorithm. By replacing every matrix–vector product of the iterative solver and avoiding the building of the influence matrix, this algorithm reduces the computing complexity from to nearly , where N is the number of nodes on the boundary. The performance of the method is illustrated by the example of the overturning of a solitary wave over a three-dimensional sloping bottom. For this test case, the accelerated method is indeed much faster than the former one, even for quite coarse grids. For instance, a reduction of the complexity by a factor six is obtained for N =6022, for the same global accuracy. The acceleration of the code allows the study of more complex physical problems and several examples are presented.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3