Non-direct estimations of adhesive and elastic properties of materials by depth-sensing indentation

Author:

Borodich Feodor M1,Galanov Boris A1

Affiliation:

1. School of Engineering, University of CardiffCardiff CF24 3AA, UK

Abstract

Using the connection between depth-sensing indentation by spherical indenters and mechanics of adhesive contact, a new method for non-direct determination of adhesive and elastic properties of contacting materials is proposed. At low loads, the force–displacement curves reflect not only elastic properties but also adhesive properties of the contact, and therefore one can try to extract from experiments both the elastic characteristics of contacting materials (such as the reduced elastic modulus) and characteristics of molecular adhesion (such as the work of adhesion and the pull-off force) using a non-direct approach. The direct methods of estimations of the adhesive characteristics of materials currently used in experiments are rather complicated due to the instability of the experimental force–displacement diagrams for ultra-low tensile forces. The proposed method is based on the use of the stable experimental data for the elastic stage of the force–displacement curve and the mechanics of adhesive contact for spherical indenters. Since the experimental data always have some measurement errors, mathematical techniques for solving ill-posed problems are employed.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference41 articles.

1. Inverse problems and parameter estimation: integration of measurements and analysis

2. Material model calibration by indentation, imprint mapping and inverse analysis

3. Similarity in the problem of contact between elastic bodies

4. Hertz contact problems for an anisotropic physically nonlinear elastic medium

5. Borodich F. M. 1998 Similarity methods in Hertz contact problems and their relations with the Meyer hardness test. Glasgow Caledonian University Technical report TR/MAT/FMB/98–98 1–45.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3