Numerical study of a multiscale expansion of the Korteweg–de Vries equation and Painlevé-II equation

Author:

Grava T1,Klein C23

Affiliation:

1. SISSAvia Beirut 2-4, 34014 Trieste, Italy

2. Institut de Mathématiques de Bourgogne, Université de Bourgogne9 avenue Alain Savary, BP 47970, 21078 Dijon Cedex, France

3. Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22 04103 Leipzig, Germany

Abstract

The Cauchy problem for the Korteweg–de Vries (KdV) equation with small dispersion of order ϵ 2 , ϵ ≪1, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wavenumber and frequency are not constant but evolve according to the Whitham equations. Whereas the difference between the KdV and the asymptotic solution decreases as ϵ in the interior of the Whitham oscillatory zone, it is known to be only of order ϵ 1/3 near the leading edge of this zone. To obtain a more accurate description near the leading edge of the oscillatory zone, we present a multiscale expansion of the solution of KdV in terms of the Hastings–McLeod solution of the Painlevé-II equation. We show numerically that the resulting multiscale solution approximates the KdV solution, in the small dispersion limit, to the order ϵ 2/3 .

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference34 articles.

1. Double scaling limit in the random matrix model: The Riemann-Hilbert approach

2. Universality of the correlations between eigenvalues of large random matrices

3. Canuto C Hussaini M.Y Quarteroni A& Zang T.A Spectral methods in fluid dynamics. 1988 Berlin Germany:Springer.

4. Claeys T. Submitted. The birth of a cut in unitary random matrix ensembles. (http://arxiv.org/abs/0711.2609).

5. Claeys T. Kuijlaars A. B. J. & Vanlessen M. In press. Multi-critical unitary random matrix ensembles and the general Painlevé II equation. Ann. Math. (http://arxiv.org/abs/math-ph/0508062).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3