Affiliation:
1. Centre for Computational Science, Department of Chemistry, University College London20 Gordon Street, London WC1H 0AJ, UK
Abstract
The purpose of the present paper is to report on the first computational study of the dynamical and rheological response of a self-assembled diamond mesophase under Couette flow in a ternary mixture composed of oil, water and an amphiphilic species. The amphiphilic diamond mesophase arises in a wide range of chemical and biological systems, and a knowledge of its rheological response has important implications in materials science and biotechnological applications. The simulations reported here are performed using a kinetic lattice–Boltzmann method. Lyotropic liquid crystals exhibit characteristic rheological responses in experiments that include shear-banding and a non-Newtonian flow curve as well as viscoelasticity under oscillatory shear. Their behaviour under steady and oscillatory shear is correctly reproduced in our simulations. On cessation of shear, as the morphology returns to the diamond phase, the relaxation of the stress response follows a stretched-exponential form for low initial strain rates.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献