Electric field assisted hydrogen fluoride etching of silica

Author:

Santiago Neto Ruy Batista12,Lesche Bernhard2

Affiliation:

1. IFET Sudeste de Minas—Rio Pomba MG, Brazil

2. Physics Department, Universidade Federal de Juiz de Fora, Juiz de Fora MG, Brazil

Abstract

The influence of electric fields on the velocity of the chemical reaction 4HF+SiO 2 →SiF 4 +2H 2 O in aqueous solution is investigated experimentally. The field strengths used were high enough to measure nonlinear effects. The results permit a critical analysis of a theoretical model known in literature. The basic idea of dipole orientation changing the rate of the primary step of the chemical reaction can explain the experimental data, but several important details of the original model had to be changed. The primary step involves two hydrogen fluoride (HF) molecules rather than one, and field screening by mobile ions has a significant influence causing nonlinear effects. The fact that field screening plays an important role implies that electric field-assisted HF etching of silica may by used as an instrument for measuring ion concentrations in highly concentrated electrolytes. The data measured may be well described by a theoretical model based on mean field approximations. The results give an insight into the structure of highly concentrated hydrofluoric acid and also permit a critical analysis of applications of the effect in measuring electric fields written in glass samples by electrothermal poling. The effect may also be used for shaping glass surfaces.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3