A sequential importance sampling filter with a new proposal distribution for state and parameter estimation of nonlinear dynamical systems

Author:

Ghosh Shuva J1,Manohar C.S1,Roy D1

Affiliation:

1. Structures Lab, Department of Civil Engineering, Indian Institute of ScienceBangalore 560 012, India

Abstract

The problem of estimating parameters of nonlinear dynamical systems based on incomplete noisy measurements is considered within the framework of Bayesian filtering using Monte Carlo simulations. The measurement noise and unmodelled dynamics are represented through additive and/or multiplicative Gaussian white noise processes. Truncated Ito–Taylor expansions are used to discretize these equations leading to discrete maps containing a set of multiple stochastic integrals. These integrals, in general, constitute a set of non-Gaussian random variables. The system parameters to be determined are declared as additional state variables. The parameter identification problem is solved through a new sequential importance sampling filter. This involves Ito–Taylor expansions of nonlinear terms in the measurement equation and the development of an ideal proposal density function while accounting for the non-Gaussian terms appearing in the governing equations. Numerical illustrations on parameter identification of a few nonlinear oscillators and a geometrically nonlinear Euler–Bernoulli beam reveal a remarkably improved performance of the proposed methods over one of the best known algorithms, i.e. the unscented particle filter.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3