Pathways to hydrogen as an energy carrier

Author:

Sigfusson Thorsteinn I1

Affiliation:

1. University of IcelandDunhagi 3, 107 Reykjavik, Iceland

Abstract

When hydrogen is used as an alternative energy carrier, it is very important to understand the pathway from the primary energy source to the final use of the carrier. This involves, for example, the understanding of greenhouse gas emissions associated with the production of hydrogen and throughout the lifecycle of a given utilization pathway as well as various energy or exergy 1 efficiencies and aspects involved. This paper which is based on a talk given at the Royal Society in London assesses and reviews the various production pathways for hydrogen with emphasis on emissions, energy use and energy efficiency. The paper also views some aspects of the breaking of the water molecule and examines some new emerging physical evidence which could pave the way to a new and more feasible pathway. A special attention will be given to the use of the renewable energy pathway. As an example of a hydrogen society that could be based on renewable primary energy, the paper describes the hydrogen society experiments in Iceland as well as unconventional hydrogen obtained from geothermal gases. In the light of our experience, attempts will be made to shed light upon drivers as well as obstacles in the development of a hydrogen society.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference24 articles.

1. Iceland — a future hydrogen economy

2. Use of mixed conducting membranes to produce hydrogen by water dissociation

3. Electrochemical Photolysis of Water at a Semiconductor Electrode

4. IEA International Energy Agency 2006 Energy technology perspectives scenarios and perspectives to 2050 . Paris France: OECD/IEA.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3