Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics

Author:

Cao Qingjie1,Wiercigroch Marian1,Pavlovskaia Ekaterina E1,Thompson J. Michael T12,Grebogi Celso1

Affiliation:

1. Centre for Applied Dynamics Research, Department of Engineering, King's College, University of AberdeenAberdeen AB24 3UE, UK

2. Department of Applied Mathematics and Theoretical Physics, University of CambridgeCambridge CB3 0WA, UK

Abstract

In a recent paper we examined a model of an arch bridge with viscous damping subjected to a sinusoidally varying central load. We showed how this yields a useful archetypal oscillator which can be used to study the transition from smooth to discontinuous dynamics as a parameter, α , tends to zero. Decreasing this smoothness parameter (a non-dimensional measure of the span of the arch) changes the smooth load–deflection curve associated with snap-buckling into a discontinuous sawtooth. The smooth snap-buckling curve is not amenable to closed-form theoretical analysis, so we here introduce a piecewise linearization that correctly fits the sawtooth in the limit at α =0. Using a Hamiltonian formulation of this linearization, we derive an analytical expression for the unperturbed homoclinic orbit, and make a Melnikov analysis to detect the homoclinic tangling under the perturbation of damping and driving. Finally, a semi-analytical method is used to examine the full nonlinear dynamics of the perturbed piecewise linear system. A chaotic attractor located at α =0.2 compares extremely well with that exhibited by the original arch model: the topological structures are the same, and Lyapunov exponents (and dimensions) are in good agreement.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3