New geochemical insights into volcanic degassing

Author:

Edmonds Marie1

Affiliation:

1. Department of Earth Sciences, University of CambridgeCambridge CB2 3EQ, UK

Abstract

Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas–melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical geochemical investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas–melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of geochemical studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in which we understand and classify volcanic eruptions.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3