Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations

Author:

Bernard Samuel1,Čajavec Branka1,Pujo-Menjouet Laurent2,Mackey Michael C3,Herzel Hanspeter1

Affiliation:

1. Institute for Theoretical Biology, Humboldt UniversityInvalidenstrasse 43, 10115 Berlin, Germany

2. Department of Mathematics, Vanderbilt University1326 Stevenson Center, Nashville, TN 37240, USA

3. Departments of Physiology, Physics & Mathematics and Centre for Nonlinear Dynamics, McGill University3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada

Abstract

The transcriptional repressor Hes1, a basic helix-loop-helix family protein, periodically changes its expression in the presomitic mesoderm. Its periodic pattern of expression is retained in a number of cultured murine cell lines. In this paper, we introduce an extended mathematical model for Hes1 oscillatory expression that includes regulation of Hes1 transcription by Drosophila Groucho (Gro) or its vertebrate counterpart, the transducine-like enhancer of split/Groucho-related gene product 1 (TLE1). Gro/TLE1 is a necessary corepressor required by a number of DNA-binding transcriptional repressors, including Hes1. Models of direct repression via Hes1 typically display an expression overshoot after transcription initiation which is not seen in the experimental data. However, numerical simulation and theoretical predictions of our model show that the cofactor Gro/TLE1 reduces the overshoot and is thus necessary for a rapid and finely tuned response of Hes1 to activation signals. Further, from detailed linear stability and numerical bifurcation analysis and simulations, we conclude that the cooperativity coefficient ( h ) for Hes1 self-repression should be large (i.e. h ≥4). Finally, we introduce the characteristic turnaround duration, and show that for our model the duration of the repression loop is between 40 and 60 min.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3