Sector and Sphere: the design and implementation of a high-performance data cloud

Author:

Gu Yunhong1,Grossman Robert L.12

Affiliation:

1. University of Illinois at ChicagoChicago, IL 60607, USA

2. Open Data GroupSuite 90, 400 Lathrop Avenue, River Forest, IL 60305, USA

Abstract

Cloud computing has demonstrated that processing very large datasets over commodity clusters can be done simply, given the right programming model and infrastructure. In this paper, we describe the design and implementation of the Sector storage cloud and the Sphere compute cloud. By contrast with the existing storage and compute clouds, Sector can manage data not only within a data centre, but also across geographically distributed data centres. Similarly, the Sphere compute cloud supports user-defined functions (UDFs) over data both within and across data centres. As a special case, MapReduce-style programming can be implemented in Sphere by using a Map UDF followed by a Reduce UDF. We describe some experimental studies comparing Sector/Sphere and Hadoop using the Terasort benchmark. In these studies, Sector is approximately twice as fast as Hadoop. Sector/Sphere is open source.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference19 articles.

1. Babcock B. Babu S. Datar M. Motwani R. & Widom J. 2002 Models and issues in data stream systems. In Proc. 21st ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems PODS 2002 New York pp. 1–16.

2. Beynon M. D. Ferreira R. Kurc T. Sussman A. & Saltz J. 2000 DataCutter: middleware for filtering very large scientific datasets on archival storage systems. In Mass Storage Systems Conf. College Park MD March 2000 .

3. Borthaku D. 2007 The Hadoop distributed file system: architecture and design. See lucene.apache.org/hadoop.

4. Chang F. Dean J. Ghemawat S. Hsieh W. C. Wallach D. A. Burrows M. Chandra T. Fikes A. & Gruber R. E. 2006 BigTable: a distributed storage system for structured data. In OSDI'06 Seattle WA November 2006 .

5. Chen L. Reddy K. & Agrawal G. 2004 GATES: a grid-based middleware for processing distributed data streams. In 13th IEEE Int. Symp. on High Performance Distributed Computing (HPDC) 2004 Honolulu HI .

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3