[NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates

Author:

Armstrong Fraser A1,Albracht Simon P.J2

Affiliation:

1. Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK

2. Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands

Abstract

Production and usage of di-hydrogen, H 2 , in micro-organisms is catalysed by highly active, ‘ancient’ metalloenzymes known as hydrogenases. Based on the number and identity of metal atoms in their active sites, hydrogenases fall into three main classes, [NiFe]-, [FeFe]- and [Fe]-. All contain the unusual ligand CO (and in most cases CN as well) making them intriguing examples of ‘organometallic’ cofactors. These ligands render the active sites superbly ‘visible’ using infrared spectroscopy, which complements the use of electron paramagnetic resonance spectroscopy in studying mechanisms and identifying intermediates. Hydrogenases are becoming a focus of attention for research into future energy technologies, not only H 2 production but also H 2 oxidation in fuel cells. Hydrogenases immobilized on electrodes exhibit high electrocatalytic activity, providing not only an important new technique for their investigation, but also a basis for novel fuel cells either using the enzyme itself, or inspired synthetic catalysts. Favourable comparisons have been made with platinum electrocatalysts, an advantage of enzymes being their specificity for H 2 and tolerance of CO. A challenge for exploiting hydrogenases is their sensitivity to O 2 , but some organisms are known to produce enzymes that overcome this problem by subtle alterations of the active site and gas access channels.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3