Large scale molecular dynamics simulation of native and mutant dihydropteroate synthase–sulphanilamide complexes suggests the molecular basis for dihydropteroate synthase drug resistance

Author:

Giordanetto Fabrizio1,Fowler Philip W1,Saqi Mansoor2,Coveney Peter V1

Affiliation:

1. Centre for Computational Science, Department of Chemistry, University College LondonChristopher Ingold Laboratories, 20 Gordon Street, WC1H 0AJ London, UK

2. Department of Medical Microbiology, Barts & The London, School of Medicine and Dentistry, Queen Mary , University of London32 Newark Street, Whitechapel E1 2AA, London, UK

Abstract

Antibiotic resistance is hampering the efficacy of drugs in the treatment of several pathological infections. Dihydropteroate synthase (DHPS) has been targeted by sulphonamide inhibitors for the past 60 years and has developed different amino acid mutations to survive sulpha drug action. We couple homology modelling techniques and massively parallel molecular dynamics simulations to study both the drug-bound and apo forms of native and mutant DHPS. Simulations of the complex between sulphanilamide and Streptomyces pneumoniae , DHPS shows how sulphanilamide is able to position itself close to 6-hydroxymethyl-7, 8-dihydropteridine-phosphate in a suitable position for the enzymatic transformation whereas in the mutant complex the sulpha drug is expelled from the catalytic site. Our simulations, therefore, provide insight into the molecular basis for drug resistance with S. pneumoniae DHPS.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3