Partitioning experiments in the laser-heated diamond anvil cell: volatile content in the Earth's core

Author:

Jephcoat Andrew P12,Bouhifd M. Ali2,Porcelli Don2

Affiliation:

1. Diamond Light SourceDiamond House, Chilton, Didcot OX11 0DE, UK

2. Department of Earth Sciences, University of OxfordParks Road, Oxford OX1 3PR, UK

Abstract

The present state of the Earth evolved from energetic events that were determined early in the history of the Solar System. A key process in reconciling this state and the observable mantle composition with models of the original formation relies on understanding the planetary processing that has taken place over the past 4.5 Ga. Planetary size plays a key role and ultimately determines the pressure and temperature conditions at which the materials of the early solar nebular segregated. We summarize recent developments with the laser-heated diamond anvil cell that have made possible extension of the conventional pressure limit for partitioning experiments as well as the study of volatile trace elements. In particular, we discuss liquid–liquid, metal–silicate (M–Sil) partitioning results for several elements in a synthetic chondritic mixture, spanning a wide range of atomic number—helium to iodine. We examine the role of the core as a possible host of both siderophile and trace elements and the implications that early segregation processes at deep magma ocean conditions have for current mantle signatures, both compositional and isotopic. The results provide some of the first experimental evidence that the core is the obvious replacement for the long-sought, deep mantle reservoir. If so, they also indicate the need to understand the detailed nature and scale of core–mantle exchange processes, from atomic to macroscopic, throughout the age of the Earth to the present day.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference68 articles.

1. The chemical composition of the Earth

2. Chemical composition of the Earth and the volatility control on planetary genetics

3. Armytage R. Jephcoat A. P. Bouhifd M. A. & Porcelli D. In preparation. Metal–silicate partitioning of iodine at high pressures and temperatures: implications for the Earth's core and 129 Xe budgets.

4. Phase relations of a carbonaceous chondrite at lower mantle conditions

5. The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3