Relationships between molecular structure and physical properties in bent-core mesogens

Author:

Weissflog Wolfgang1,Shreenivasa Murthy H.N1,Diele Siegmar1,Pelzl Gerhard1

Affiliation:

1. Institut für Physikalische Chemie, Universität Halle-WittenbergMühlpforte 1, 06108 Halle, Germany

Abstract

New five-ring bent-core mesogens that possess only ester connecting groups between the aromatic rings and different lateral substituents at the central phenyl ring are presented. The mesophases have been assigned by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical measurements. It is shown that the mesophase behaviour depends strongly on the position of the lateral substituents. Compounds, which are derived from 4-cyano-, 4-chloro- and 4,6-dichloro-resorcinol, show polymorphism variants where polar phases (SmAP, SmCP) occur together with nematic and conventional smectic phases, e.g. SmA–SmAP, SmA–SmC S P A –Col ob –SmC S P A , N–SmA–SmCP A , SmA–SmC–SmCP A and SmC–SmCP A . On the basis of the behaviour of two series of materials, the occurrence of different polar-switching mechanisms could be demonstrated. Apart from the usual mechanism by director rotation around the tilt cone, the polar switching can also take place through collective rotation of the molecules around their long axes, which corresponds to a field-induced switching of the layer chirality. A remarkable finding is the polar switching in the crystalline modification of long-chain, bent-core compounds with a methyl group in 2-position, which is accompanied by a clear change of the optical texture and by a relatively high switching polarization (approx. 600 nC cm −2 ). It was found for selected bent-core compounds that, above the transition temperature of a polar to a non-polar phase, the non-polar phase can be transformed to the polar phase by application of an electric field, which was proved for the transitions isotropic–SmCP F , SmA–SmCP F and isotropic–CrII polar.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3