Mathematical modelling of atherosclerosis as an inflammatory disease

Author:

El Khatib N.1,Génieys S.1,Kazmierczak B.2,Volpert V.1

Affiliation:

1. Institut Camille Jordan, CNRS, UMR 5208, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

2. Institute of Fundamental Technological Research, Polish Academy of Sciences, Świetokrzyska 21, 00-049 Warsaw, Poland

Abstract

Atherosclerosis is an inflammatory disease. The atherosclerosis process starts when low-density lipoproteins (LDLs) enter the intima of the blood vessel, where they are oxidized (ox-LDLs). The anti-inflammatory response triggers the recruitment of monocytes. Once in the intima, the monocytes are transformed into macrophages and foam cells, leading to the production of inflammatory cytokines and further recruitment of monocytes. This auto-amplified process leads to the formation of an atherosclerotic plaque and, possibly, to its rupture. In this paper we develop two mathematical models based on reaction–diffusion equations in order to explain the inflammatory process. The first model is one-dimensional: it does not consider the intima’s thickness and shows that low ox-LDL concentrations in the intima do not lead to a chronic inflammatory reaction. Intermediate ox-LDL concentrations correspond to a bistable system, which can lead to a travelling wave that can be initiated by certain conditions, such as infection or injury. High ox-LDL concentrations correspond to a monostable system, and even a small perturbation of the non-inflammatory case leads to travelling-wave propagation, which corresponds to a chronic inflammatory response. The second model we suggest is two-dimensional: it represents a reaction–diffusion system in a strip with nonlinear boundary conditions to describe the recruitment of monocytes as a function of the cytokines’ concentration. We prove the existence of travelling waves and confirm our previous results, which show that atherosclerosis develops as a reaction–diffusion wave. The results of the two models are confirmed by numerical simulations. The latter show that the two-dimensional model converges to the one-dimensional one if the thickness of the intima tends to zero.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3