Acidosis in models of cardiac ventricular myocytes

Author:

Crampin Edmund J1,Smith Nicolas P1,Langham A. Elise2,Clayton Richard H3,Orchard Clive H4

Affiliation:

1. Bioengineering Institute, The University of AucklandPrivate Bag 92019 Auckland, New Zealand

2. School of Biomedical Sciences, University of LeedsLeeds LS2 9JT, UK

3. Department of Computer Science, University of SheffieldRegent Court, 211 Portobello Street, Sheffield S1 4DP, UK

4. Department of Physiology, University of BristolMedical Sciences Building, University Walk, Bristol BS8 1TD, UK

Abstract

The effects of acidosis on cardiac electrophysiology and excitation–contraction coupling have been studied extensively. Acidosis decreases the strength of contraction and leads to altered calcium transients as a net result of complex interactions between protons and a variety of intracellular processes. The relative contributions of each of the changes under acidosis are difficult to establish experimentally, however, and significant uncertainties remain about the key mechanisms of impaired cardiac function. In this paper, we review the experimental findings concerning the effects of acidosis on the action potential and calcium handling in the cardiac ventricular myocyte, and we present a modelling study that establishes the contribution of the different effects to altered Ca 2+ transients during acidosis. These interactions are incorporated into a dynamical model of pH regulation in the myocyte to simulate respiratory acidosis in the heart.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3